Publications

Publications in peer reviewed journals

8 Publications found
  • A fiber-deprived diet disturbs the fine-scale spatial architecture of the murine colon microbiome.

    Riva A, Kuzyk O, Forsberg E, Siuzdak G, Pfann C, Herbold C, Daims H, Loy A, Warth B, Berry D
    2019 - Nat Commun, 1: 4366

    Abstract: 

    Compartmentalization of the gut microbiota is thought to be important to system function, but the extent of spatial organization in the gut ecosystem remains poorly understood. Here, we profile the murine colonic microbiota along longitudinal and lateral axes using laser capture microdissection. We found fine-scale spatial structuring of the microbiota marked by gradients in composition and diversity along the length of the colon. Privation of fiber reduces the diversity of the microbiota and disrupts longitudinal and lateral gradients in microbiota composition. Both mucus-adjacent and luminal communities are influenced by the absence of dietary fiber, with the loss of a characteristic distal colon microbiota and a reduction in the mucosa-adjacent community, concomitant with depletion of the mucus layer. These results indicate that diet has not only global but also local effects on the composition of the gut microbiota, which may affect function and resilience differently depending on location.

  • Draft genome sequence of Desulfosporosinus sp. strain Sb-LF, isolated from an acidic peatland in Germany

    Hausmann B, Pjevac P, Huemer M, Herbold CW, Pester M, Loy A
    2019 - Microbiology Resource Announcements, 8: e00428-19

    Abstract: 

    Desulfosporosinus sp. strain Sb-LF was isolated from an acidic peatland in Bavaria, Germany. Here, we report the draft genome sequence of the sulfate-reducing and lactate-utilizing strain Sb-LF.

  • In situ abundance and carbon fixation activity of distinct anoxygenic phototrophs in the stratified seawater lake Rogoznica.

    Pjevac P, Dyksma S, Goldhammer T, Mujakić I, Koblížek M, Mußmann M, Amann R, Orlić S
    2019 - Environ. Microbiol., in press

    Abstract: 

    Sulphide-driven anoxygenic photosynthesis is an ancient microbial metabolism that contributes significantly to inorganic carbon fixation in stratified, sulphidic water bodies. Methods commonly applied to quantify inorganic carbon fixation by anoxygenic phototrophs, however, cannot resolve the contributions of distinct microbial populations to the overall process. We implemented a straightforward workflow, consisting of radioisotope labelling and flow cytometric cell sorting based on the distinct autofluorescence of bacterial photopigments, to discriminate and quantify contributions of co-occurring anoxygenic phototrophic populations to in situ inorganic carbon fixation in environmental samples. This allowed us to assign 89.3% ± 7.6% of daytime inorganic carbon fixation by anoxygenic phototrophs in Lake Rogoznica (Croatia) to an abundant chemocline-dwelling population of green sulphur bacteria (dominated by Chlorobium phaeobacteroides), whereas the co-occurring purple sulphur bacteria (Halochromatium sp.) contributed only 1.8% ± 1.4%. Furthermore, we obtained two metagenome assembled genomes of green sulphur bacteria and one of a purple sulphur bacterium which provides the first genomic insights into the genus Halochromatium, confirming its high metabolic flexibility and physiological potential for mixo- and heterotrophic growth.

  • The cooling tower water microbiota: seasonal dynamics and co-occurrence of bacterial and protist phylotypes

    Tsao HF, Scheikl U, Herbold C, Indra A, Walochnik J, Horn M
    2019 - Water Res., 464-479

    Abstract: 

    Cooling towers for heating, ventilation and air conditioning are ubiquitous in the built environment. Often located on rooftops, their semi-open water basins provide a suitable environment for microbial growth. They are recognized as a potential source of bacterial pathogens and have been associated with disease outbreaks such as Legionnaires' disease. While measures to minimize public health risks are in place, the general microbial and protist community structure and dynamics in these systems remain largely elusive. In this study, we analysed the microbiome of the bulk water from the basins of three cooling towers by 16S and 18S rRNA gene amplicon sequencing over the course of one year. Bacterial diversity in all three towers was broadly comparable to other freshwater systems, yet less diverse than natural environments; the most abundant taxa are also frequently found in freshwater or drinking water. While each cooling tower had a pronounced site-specific microbial community, taxa shared among all locations mainly included groups generally associated with biofilm formation. We also detected several groups related to known opportunistic pathogens, such as Legionella, Mycobacterium, and Pseudomonas species, albeit at generally low abundance. Although cooling towers represent a rather stable environment, microbial community composition was highly dynamic and subject to seasonal change. Protists are important members of the cooling tower water microbiome and known reservoirs for bacterial pathogens. Co-occurrence analysis of bacteria and protist taxa successfully captured known interactions between amoeba-associated bacteria and their hosts, and predicted a large number of additional relationships involving ciliates and other protists. Together, this study provides an unbiased and comprehensive overview of microbial diversity of cooling tower water basins, establishing a framework for investigating and assessing public health risks associated with these man-made freshwater environments.

  • Long-term transcriptional activity at zero growth of a cosmopolitan rare biosphere member

    Hausmann B, Pelikan C, Rattei T, Loy A, Pester M
    2019 - MBio, 02189-18

    Abstract: 

    Microbial diversity in the environment is mainly concealed within the rare biosphere (all species with <0.1% relative abundance). While dormancy explains a low-abundance state very well, the mechanisms leading to rare but active microorganisms remain elusive. We used environmental systems biology to genomically and transcriptionally characterize " Desulfosporosinus infrequens," a low-abundance sulfate-reducing microorganism cosmopolitan to freshwater wetlands, where it contributes to cryptic sulfur cycling. We obtained its near-complete genome by metagenomics of acidic peat soil. In addition, we analyzed anoxic peat soil incubated under -like conditions for 50 days by -targeted qPCR and metatranscriptomics. The population stayed at a constant low abundance under all incubation conditions, averaging 1.2 × 10 16S rRNA gene copies per cm³ soil. In contrast, transcriptional activity of " Desulfosporosinus infrequens" increased at day 36 by 56- to 188-fold when minor amendments of acetate, propionate, lactate, or butyrate were provided with sulfate, compared to the no-substrate-control. Overall transcriptional activity was driven by expression of genes encoding ribosomal proteins, energy metabolism, and stress response but not by expression of genes encoding cell growth-associated processes. Since our results did not support growth of these highly active microorganisms in terms of biomass increase or cell division, they had to invest their sole energy for maintenance, most likely counterbalancing acidic pH conditions. This finding explains how a rare biosphere member can contribute to a biogeochemically relevant process while remaining in a zero-growth state over a period of 50 days. The microbial rare biosphere represents the largest pool of biodiversity on Earth and constitutes, in sum of all its members, a considerable part of a habitat's biomass. Dormancy or starvation is typically used to explain the persistence of low-abundance microorganisms in the environment. We show that a low-abundance microorganism can be highly transcriptionally active while remaining in a zero-growth state for at least 7 weeks. Our results provide evidence that this zero growth at a high cellular activity state is driven by maintenance requirements. We show that this is true for a microbial keystone species, in particular a cosmopolitan but permanently low-abundance sulfate-reducing microorganism in wetlands that is involved in counterbalancing greenhouse gas emissions. In summary, our results provide an important step forward in understanding time-resolved activities of rare biosphere members relevant for ecosystem functions.

  • Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters

    Berg JS, Pjevac P, Sommer T, Buckner CRT, Philippi M, Hach PF, Liebeke M, Holtappels M, Danza F, Tonolla M, Sengupta A, Schubert CJ, Milucka J, Kuypers MMM
    2019 - Environ. Microbiol., 5: 1611-1626

    Abstract: 

    Anoxygenic phototrophic sulfide oxidation by green and purple sulfur bacteria (PSB) plays a key role in sulfide removal from anoxic shallow sediments and stratified waters. Although some PSB can also oxidize sulfide with nitrate and oxygen, little is known about the prevalence of this chemolithotrophic lifestyle in the environment. In this study, we investigated the role of these phototrophs in light-independent sulfide removal in the chemocline of Lake Cadagno. Our temporally resolved, high-resolution chemical profiles indicated that dark sulfide oxidation was coupled to high oxygen consumption rates of ~9 μM O ·h . Single-cell analyses of lake water incubated with CO in the dark revealed that Chromatium okenii was to a large extent responsible for aerobic sulfide oxidation and it accounted for up to 40% of total dark carbon fixation. The genome of Chr. okenii reconstructed from the Lake Cadagno metagenome confirms its capacity for microaerophilic growth and provides further insights into its metabolic capabilities. Moreover, our genomic and single-cell data indicated that other PSB grow microaerobically in these apparently anoxic waters. Altogether, our observations suggest that aerobic respiration may not only play an underappreciated role in anoxic environments but also that organisms typically considered strict anaerobes may be involved.

  • Transcriptomic and proteomic insight into the mechanism of cyclooctasulfur- versus thiosulfate-oxidation by the chemolithoautotroph Sulfurimonas denitrificans

    Götz F, Pjevac P, Markert S, McNichol J, Becher D, Schweder T, Mussmann M, Sievert SM
    2019 - Environ. Microbiol., 1: 244-258

    Abstract: 

    Chemoautotrophic bacteria belonging to the genus Sulfurimonas (class Campylobacteria) were previously identified as key players in the turnover of zero-valence sulfur, a central intermediate in the marine sulfur cycle. S. denitrificans was further shown to be able to oxidize cyclooctasulfur (S ). However, at present the mechanism of activation and metabolism of cyclooctasulfur is not known. Here, we assessed the transcriptome and proteome of S. denitrificans grown with either thiosulfate or S as the electron donor. While the overall expression profiles under the two growth conditions were rather similar, distinct differences were observed that could be attributed to the utilization of S . This included a higher abundance of expressed genes related to surface attachment in the presence of S , and the differential regulation of the sulfur-oxidation multienzyme complex (SOX), which in S. denitrificans is encoded in two gene clusters: soxABXY Z and soxCDY Z . While the proteins of both clusters were present with thiosulfate, only proteins of the soxCDY Z were detected at significant levels with S . Based on these findings a model for the oxidation of S is proposed. Our results have implications for interpreting metatranscriptomic and -proteomic data and for the observed high level of diversification of soxY Z among sulfur-oxidizing Campylobacteria.

  • Draft genome sequence of Desulfosporosinus fructosivorans strain 63.6F(T), isolated from marine sediment in the Baltic Sea

    Hausmann B, Vandieken V, Pjevac P, Schreck S, Herbold CW, Loy A
    2019 - Microbiology Resource Announcements, 8: e00427-19

    Abstract: 

    Desulfosporosinus fructosivorans strain 63.6FT is a strictly anaerobic, spore-forming, sulfate-reducing bacterium isolated from marine sediment in the Baltic Sea. Here, we report the draft genome sequence of D. fructosivorans 63.6FT.

Book chapters and other publications

No matching database entries were found.