Publications

Publications in peer reviewed journals

8 Publications found
  • Reduced alpha diversity of the oral microbiome correlates with short progression‐free survival in patients with relapsed/refractory multiple myeloma treated with ixazomib‐based therapy (AGMT MM 1, phase II trial)

    Ludwig H, Hausmann B, Schreder M, Pönisch W, Zojer N, Knop S, Gunsilius E, Egle A, Petzer A, Einsele H, Hajek R, Weisel K, Krenosz KJ, Lang A, Lechner D, Greil R, Berry D
    2021 - eJHaem, 2: 102–106

    Abstract: 

    Alterations in the human microbiome have been linked to several malignant diseases. Here, we investigated the oral microbiome of 79 patients with relapsed/refractory multiple myeloma (MM) treated with ixazomib‐thalidomide‐dexamethasone. Increased alpha diversity (Shannon index) at the phylum level was associated with longer progression‐free survival (PFS) (10.2 vs 8.5 months, P = .04), particularly in patients with very long (>75% quartile) PFS . Additionally, alpha diversity was lower in patients with progressive disease (P < .05). These findings suggest an interrelationship between the oral microbiome and outcome in patients with MM and encourage a novel direction for diagnostic and/or therapeutic strategies.

  • Mucosal biofilms are an endoscopic feature of irritable bowel syndrome and ulcerative colitis.

    Baumgartner M, Lang M, Holley H, Crepaz D, Hausmann B, Pjevac P, Moser D, Haller F, Hof F, Beer A, Orgler E, Frick A, Khare V, Evstatiev R, Strohmaier S, Primas C, Dolak W, Köcher T, Kristaps K, Rath T, Neurath MF, Berry D, Makristathis A, Muttenthaler M, Gasche C
    2021 - Gastroenterology, in press

    Abstract: 

    Irritable bowel syndrome (IBS) and inflammatory bowel diseases result in a substantial reduction in quality of life and a considerable socio-economic impact. In IBS, diagnosis and treatment options are limited, but evidence for an involvement of the gut microbiome in disease pathophysiology is emerging. Here we analyzed the prevalence of endoscopically visible mucosal biofilms in gastrointestinal disease and associated changes in microbiome composition and metabolism.
    The presence of mucosal biofilms was assessed in 1,426 patients at two European university-based endoscopy centers. One-hundred-seventeen patients were selected for in-depth molecular and microscopic analysis using 16S-rRNA gene amplicon-sequencing of colonic biopsies and fecal samples, confocal microscopy with deep learning-based image analysis, scanning electron microscopy, metabolomics and in vitro biofilm formation assays.
    Biofilms were present in 57% of IBS and 34% of ulcerative colitis (UC) patients, compared to 6% of controls (p<0.001). These yellow-green adherent layers of the ileum and right-sided colon were microscopically confirmed to be dense bacterial biofilms. 16S-sequencing link the presence of biofilms to a dysbiotic gut microbiome including overgrowth of Escherichia coli and Ruminococcus gnavus. R. gnavus isolates cultivated from patient biofilms also formed biofilms in vitro. Metabolomic analysis found an accumulation of bile acids within biofilms that correlated with fecal bile acid excretion, linking this phenotype with a mechanism of diarrhea.
    The presence of mucosal biofilms is an endoscopic feature in a subgroup of IBS and UC with disrupted bile acid metabolism and bacterial dysbiosis. They provide novel insight into the pathophysiology of IBS and UC, illustrating that biofilm can be seen as a tipping point in the development of dysbiosis and disease.

  • Microbial community structure in hadal sediments: high similarity along trench axes and strong changes along redox gradients.

    Schauberger C, Glud RN, Hausmann B, Trouche B, Maignien L, Poulain J, Wincker P, Arnaud-Haond S, Wenzhöfer F, Thamdrup B
    2021 - ISME J, in press

    Abstract: 

    Hadal trench sediments are hotspots of biogeochemical activity in the deep sea, but the biogeochemical and ecological factors that shape benthic hadal microbial communities remain unknown. Here, we sampled ten hadal sites from two trench regions with a vertical resolution of down to 1 cm. We sequenced 16S rRNA gene amplicons using universal and archaea-specific primer sets and compared the results to biogeochemical parameters. Despite bathymetric and depositional heterogeneity we found a high similarity of microbial communities within each of the two trench axes, while composition at the phylum level varied strongly with sediment depth in conjunction with the redox stratification into oxic, nitrogenous, and ferruginous zones. As a result, communities of a given sediment horizon were more similar to each other across a distance of hundreds of kilometers within each trench, than to those of adjacent horizons from the same sites separated only by centimeters. Total organic carbon content statistically only explained a small part of the variation within and between trenches, and did not explain the community differences observed between the hadal and adjacent shallower sites. Anaerobic taxa increased in abundance at the top of the ferruginous zone, seeded by organisms deposited at the sediment surface and surviving burial through the upper redox zones. While an influence of other potential factors such as geographic isolation, hydrostatic pressure, and non-steady state depositional regimes could not be discerned, redox stratification and diagenesis appear to be the main selective forces that structure community composition in hadal sediments.

  • An Economical and Flexible Dual Barcoding, Two-Step PCR Approach for Highly Multiplexed Amplicon Sequencing.

    2021 - Front Microbiol, 669776

    Abstract: 

    In microbiome research, phylogenetic and functional marker gene amplicon sequencing is the most commonly-used community profiling approach. Consequently, a plethora of protocols for the preparation and multiplexing of samples for amplicon sequencing have been developed. Here, we present two economical high-throughput gene amplification and sequencing workflows that are implemented as standard operating procedures at the Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna. These workflows are based on a previously-published two-step PCR approach, but have been updated to either increase the accuracy of results, or alternatively to achieve orders of magnitude higher numbers of samples to be multiplexed in a single sequencing run. The high-accuracy workflow relies on unique dual sample barcoding. It allows the same level of sample multiplexing as the previously-published two-step PCR approach, but effectively eliminates residual read missasignments between samples (crosstalk) which are inherent to single barcoding approaches. The high-multiplexing workflow is based on combinatorial dual sample barcoding, which theoretically allows for multiplexing up to 299,756 amplicon libraries of the same target gene in a single massively-parallelized amplicon sequencing run. Both workflows presented here are highly economical, easy to implement, and can, without significant modifications or cost, be applied to any target gene of interest.

  • Functional iron-deficiency in women with allergy rhinitis is associated with symptoms after nasal provocation and lack of iron-sequestering microbes.

    Petje LM, Jensen SA, Szikora S, Sulzbacher M, Bartosik T, Pjevac P, Hausmann B, Hufnagl K, Untersmayr E, Fischer L, Vyskocil E, Eckl-Dorna J, Jensen-Jarolim E, Hofstetter G, Afify SM, Krenn CG, Roth GA, Rivelles E, Hann S, Roth-Walter F
    2021 - Allergy, in press
  • Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling.

    Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T, Lloyd KG, Loy A, Wasmund K
    2021 - ISME J, in press

    Abstract: 

    Acidobacteriota are widespread and often abundant in marine sediments, yet their metabolic and ecological properties are poorly understood. Here, we examined metabolisms and distributions of Acidobacteriota in marine sediments of Svalbard by functional predictions from metagenome-assembled genomes (MAGs), amplicon sequencing of 16S rRNA and dissimilatory sulfite reductase (dsrB) genes and transcripts, and gene expression analyses of tetrathionate-amended microcosms. Acidobacteriota were the second most abundant dsrB-harboring (averaging 13%) phylum after Desulfobacterota in Svalbard sediments, and represented 4% of dsrB transcripts on average. Meta-analysis of dsrAB datasets also showed Acidobacteriota dsrAB sequences are prominent in marine sediments worldwide, averaging 15% of all sequences analysed, and represent most of the previously unclassified dsrAB in marine sediments. We propose two new Acidobacteriota genera, Candidatus Sulfomarinibacter (class Thermoanaerobaculia, "subdivision 23") and Ca. Polarisedimenticola ("subdivision 22"), with distinct genetic properties that may explain their distributions in biogeochemically distinct sediments. Ca. Sulfomarinibacter encode flexible respiratory routes, with potential for oxygen, nitrous oxide, metal-oxide, tetrathionate, sulfur and sulfite/sulfate respiration, and possibly sulfur disproportionation. Potential nutrients and energy include cellulose, proteins, cyanophycin, hydrogen, and acetate. A Ca. Polarisedimenticola MAG encodes various enzymes to degrade proteins, and to reduce oxygen, nitrate, sulfur/polysulfide and metal-oxides. 16S rRNA gene and transcript profiling of Svalbard sediments showed Ca. Sulfomarinibacter members were relatively abundant and transcriptionally active in sulfidic fjord sediments, while Ca. Polarisedimenticola members were more relatively abundant in metal-rich fjord sediments. Overall, we reveal various physiological features of uncultured marine Acidobacteriota that indicate fundamental roles in seafloor biogeochemical cycling.

  • Combined hormonal contraceptives (CHCs) are associated with minor changes in composition and diversity in gut microbiota of healthy women.

    Mihajlovic J, Leutner M, Hausmann B, Kohl G, Schwarz J, Röver H, Stimakovits N, Wolf P, Maruszczak K, Bastian M, Kautzky-Willer A, Berry D
    2021 - Environ Microbiol, in press

    Abstract: 

    Recent human and animal studies have found associations between gut microbiota composition and serum levels of sex hormones, indicating that they could be an important factor in shaping the microbiota. However, little is known about the effect of regular hormonal fluctuations over the menstrual cycle or CHC-related changes of hormone levels on gut microbiota structure, diversity and dynamics. The aim of this study was to investigate the effect of CHCs on human gut microbiota composition. The effect of CHC pill intake on gut microbiota composition was studied in a group of 7 healthy pre-menopausal women using the CHC pill, compared to the control group of 9 age-matched healthy women that have not used hormonal contraceptives in the six months prior the start of the study. By analyzing the gut microbiota composition in both groups during one menstrual cycle, we found that CHC usage is associated with a minor decrease in gut microbiota diversity and differences in the abundance of several bacterial taxa. These results call for further investigation of the mechanisms underlying hormonal and hormonal contraceptive-related changes of the gut microbiota and the potential implications of these changes for women's health. This article is protected by copyright. All rights reserved.

  • Anaerobic bacterial degradation of protein and lipid macromolecules in subarctic marine sediment.

    Pelikan C, Wasmund K, Glombitza C, Hausmann B, Herbold CW, Flieder M, Loy A
    2021 - ISME J, 3: 833-847

    Abstract: 

    Microorganisms in marine sediments play major roles in marine biogeochemical cycles by mineralizing substantial quantities of organic matter from decaying cells. Proteins and lipids are abundant components of necromass, yet the taxonomic identities of microorganisms that actively degrade them remain poorly resolved. Here, we revealed identities, trophic interactions, and genomic features of bacteria that degraded C-labeled proteins and lipids in cold anoxic microcosms containing sulfidic subarctic marine sediment. Supplemented proteins and lipids were rapidly fermented to various volatile fatty acids within 5 days. DNA-stable isotope probing (SIP) suggested Psychrilyobacter atlanticus was an important primary degrader of proteins, and Psychromonas members were important primary degraders of both proteins and lipids. Closely related Psychromonas populations, as represented by distinct 16S rRNA gene variants, differentially utilized either proteins or lipids. DNA-SIP also showed C-labeling of various Deltaproteobacteria within 10 days, indicating trophic transfer of carbon to putative sulfate-reducers. Metagenome-assembled genomes revealed the primary hydrolyzers encoded secreted peptidases or lipases, and enzymes for catabolism of protein or lipid degradation products. Psychromonas species are prevalent in diverse marine sediments, suggesting they are important players in organic carbon processing in situ. Together, this study provides new insights into the identities, functions, and genomes of bacteria that actively degrade abundant necromass macromolecules in the seafloor.

Book chapters and other publications

No matching database entries were found.