Publications

Publications in peer reviewed journals

4 Publications found
  • Draft genome sequence of Desulfosporosinus sp. strain Sb-LF, isolated from an acidic peatland in Germany

    Hausmann B, Pjevac P, Huemer M, Herbold CW, Pester M, Loy A
    2019 - Microbiology Resource Announcements, 8: e00428-19

    Abstract: 

    Desulfosporosinus sp. strain Sb-LF was isolated from an acidic peatland in Bavaria, Germany. Here, we report the draft genome sequence of the sulfate-reducing and lactate-utilizing strain Sb-LF.

  • Draft genome sequence of Desulfosporosinus fructosivorans strain 63.6F(T), isolated from marine sediment in the Baltic Sea

    Hausmann B, Vandieken V, Pjevac P, Schreck S, Herbold CW, Loy A
    2019 - Microbiology Resource Announcements, 8: e00427-19

    Abstract: 

    Desulfosporosinus fructosivorans strain 63.6FT is a strictly anaerobic, spore-forming, sulfate-reducing bacterium isolated from marine sediment in the Baltic Sea. Here, we report the draft genome sequence of D. fructosivorans 63.6FT.

  • Draft genome sequence of Telmatospirillum siberiense 26-4b1, an acidotolerant peatland Alphaproteobacterium potentially involved in sulfur cycling

    Hausmann B, Pjevac P, Schreck K, Herbold CW, Daims H, Wagner M, Loy A
    2018 - Genome Announc, e01524-17

    Abstract: 

    The facultative anaerobic chemoorganoheterotrophic alphaproteobacterium 26-4b1 was isolated from a Siberian peatland. We report here a 6.20-Mbp near-complete high-quality draft genome sequence of that reveals expected and novel metabolic potential for the genus , including genes for sulfur oxidation.

  • Lifestyle and Horizontal Gene Transfer-Mediated Evolution of Mucispirillum schaedleri, a Core Member of the Murine Gut Microbiota

    Loy A, Pfann C, Steinberger M, Hanson B, Herp S, Brugiroux S, Gomes Neto JC, Boekschoten MV, Schwab C, Urich T, Ramer-Tait AE, Rattei T, Stecher B, Berry D
    2017 - mSystems, e00171-16

    Abstract: 

    is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species , which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The genome has been shaped by extensive horizontal gene transfer, primarily from intestinal - and , indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem. Shifts in gut microbiota composition have been associated with intestinal inflammation, but it remains unclear whether inflammation-associated bacteria are commensal or detrimental to their host. Here, we studied the lifestyle of the gut bacterium , which is associated with inflammation in widely used mouse models. We found that has specialized systems to handle oxidative stress during inflammation. Additionally, it expresses secretion systems and effector proteins and can modify the mucosal gene expression of its host. This suggests that undergoes intimate interactions with its host and may play a role in inflammation. The insights presented here aid our understanding of how commensal gut bacteria may be involved in altering susceptibility to disease.

Book chapters and other publications

No matching database entries were found.