Publications

Publications in peer reviewed journals

32 Publications found
  • Individual sweet taste perception influences salivary characteristics after orosensory stimulation with sucrose and non-caloric sweeteners

    Karl CM, Vidakovic A, Pjevac P, Hausmann B, Schleining G, Ley JP, Berry D, Hans J, Wendlin M, Koenig J, Somoza V, Lieder B
    2022 - Frontiers in Nutrition, 737: 831726

    Abstract: 

    Emerging evidence suggests a major role for salivary flow and the viscoelastic properties for taste perception and mouthfeel. Sweet-tasting compounds have also been proposed to have an effect on salivary characteristic. However, it is yet not clarified if perceived differences in the sensorial properties of structural diverse sweet tasting compounds contribute to salivary flow and viscoelasticity of saliva as part of mouthfeel and overall taste perception. Here we hypothesized that sensorially diverse sweeteners would affect salivary characteristics differently. Thus, we investigated the salivary flow, viscoelasticity of saliva, and selected influencing factors including the basal oral microbiome from 21 healthy test subjects after orosensory stimulation with sucrose, rebaudioside M (RebM), sucralose, and neohesperidin dihydrochalcone (NHDC) in a cross-over design. All test compounds enhanced the salivary flow by up to 1.51 ± 0.12 g/min for RebM, compared to 1.10 ± 0.09 g/min for water in the first minute after stimulation. The increase in the flow rate was correlated moderately to the individual perceived sweetness (r= 0.3, p< 0.01), but did not differ between the test compounds. The complex viscosity of the saliva was not affected by the test compounds, but analysis of covariance showed that the complex viscosity was associated (p< 0.05) with the concentration of mucin 5B (Muc5B). The oral microbiome showed a typical composition and diversity but was strongly individual-dependent (PERMANOVA: R²=0.76, p< 0.001), and was not associated with the changes in salivary characteristics. In conclusion, the present study indicates an impact of the individual sweetness impression on the flow rate without measurable changes in the complex viscosity of saliva, which may contribute to overall taste perception and mouthfeel of sweet tasting compounds.

  • Microbial marker for seawater intrusion in a coastal Mediterranean shallow Lake, Lake Vrana, Croatia.

    Selak L, Marković T, Pjevac P, Orlić S
    2022 - Sci Total Environ, 157859

    Abstract: 

    Climate change-induced rising sea levels and prolonged dry periods impose a global threat to the freshwater scarcity on the coastline: salinization. Lake Vrana is the largest surface freshwater resource in mid-Dalmatia, while the local springs are heavily used in agriculture. The karstified carbonate ridge that separates this shallow lake from the Adriatic Sea enables seawater intrusion if the lakes' precipitation-evaporation balance is disturbed. In this study, the impact of anthropogenic activities and drought exuberated salinization on microbial communities was tracked in Lake Vrana and its inlets, using 16S rRNA gene sequencing. The lack of precipitation and high water temperatures in summer months introduced an imbalance in the water regime of the lake, allowing for seawater intrusion, mainly via the karst conduit Jugovir. The determined microbial community spatial differences in the lake itself and the main drainage canals were driven by salinity, drought, and nutrient loading. Particle-associated and free-living microorganisms both strongly responded to the ecosystem perturbations, and their co-occurrence was driven by the salinization event. Notably, a bloom of halotolerant taxa, predominant the sulfur-oxidizing genus Sulfurovum, emerged with increased salinity and sulfate concentrations, having the potential to be used as an indicator for salinization of shallow coastal lakes. Following summer salinization, lake water column homogenization took from a couple of weeks up to a few months, while the entire system displayed increased salinity despite increased precipitation. This study represents a valuable contribution to understanding the impact of the Freshwater Salinization Syndrome on Mediterranean lakes' microbial communities and the ecosystem resilience.

  • Elucidating the role of the gut microbiota in the physiological effects of dietary fiber.

    Deehan EC, Zhang Z, Riva A, Armet AM, Perez-Muñoz ME, Nguyen NK, Krysa JA, Seethaler B, Zhao YY, Cole J, Li F, Hausmann B, Spittler A, Nazare JA, Delzenne NM, Curtis JM, Wismer WV, Proctor SD, Bakal JA, Bischoff SC, Knights D, Field CJ, Berry D, Prado CM, Walter J
    2022 - Microbiome, 1: 77

    Abstract: 

    Dietary fiber is an integral part of a healthy diet, but questions remain about the mechanisms that underlie effects and the causal contributions of the gut microbiota. Here, we performed a 6-week exploratory trial in adults with excess weight (BMI: 25-35 kg/m) to compare the effects of a high-dose (females: 25 g/day; males: 35 g/day) supplement of fermentable corn bran arabinoxylan (AX; n = 15) with that of microbiota-non-accessible microcrystalline cellulose (MCC; n = 16). Obesity-related surrogate endpoints and biomarkers of host-microbiome interactions implicated in the pathophysiology of obesity (trimethylamine N-oxide, gut hormones, cytokines, and measures of intestinal barrier integrity) were assessed. We then determined whether clinical outcomes could be predicted by fecal microbiota features or mechanistic biomarkers.
    AX enhanced satiety after a meal and decreased homeostatic model assessment of insulin resistance (HOMA-IR), while MCC reduced tumor necrosis factor-α and fecal calprotectin. Machine learning models determined that effects on satiety could be predicted by fecal bacterial taxa that utilized AX, as identified by bioorthogonal non-canonical amino acid tagging. Reductions in HOMA-IR and calprotectin were associated with shifts in fecal bile acids, but correlations were negative, suggesting that the benefits of fiber may not be mediated by their effects on bile acid pools. Biomarkers of host-microbiome interactions often linked to bacterial metabolites derived from fiber fermentation (short-chain fatty acids) were not affected by AX supplementation when compared to non-accessible MCC.
    This study demonstrates the efficacy of purified dietary fibers when used as supplements and suggests that satietogenic effects of AX may be linked to bacterial taxa that ferment the fiber or utilize breakdown products. Other effects are likely microbiome independent. The findings provide a basis for fiber-type specific therapeutic applications and their personalization.
    Clinicaltrials.gov, NCT02322112 , registered on July 3, 2015. Video Abstract.

  • Individuality of the Extremely Premature Infant Gut Microbiota Is Driven by Ecological Drift.

    Seki D, Schauberger C, Hausmann B, Berger A, Wisgrill L, Berry D
    2022 - mSystems, e0016322

    Abstract: 

    The initial contact between humans and their colonizing gut microbiota after birth is thought to have expansive and long-lasting consequences for physiology and health. Premature infants are at high risk of suffering from lifelong impairments, due in part to aberrant development of gut microbiota that can contribute to early-life infections and inflammation. Despite their importance to health, the ecological assembly and succession processes governing gut microbiome composition in premature infants remained incompletely understood. Here, we quantified these ecological processes in a spatiotemporally resolved 16S rRNA gene amplicon sequencing data set of 60 extremely premature neonates using an established mathematical framework. We found that gut colonization during the first months of life is predominantly stochastic, whereby interindividual diversification of microbiota is driven by ecological drift. Dispersal limitations are initially small but have increasing influence at later stages of succession. Furthermore, we find similar trends in a cohort of 32 healthy term-born infants. These results suggest that the uniqueness of individual gut microbiota of extremely premature infants is largely due to stochastic assembly. Our knowledge concerning the initial gut microbiome assembly in human neonates is limited, and scientific progression in this interdisciplinary field is hindered due to the individuality in composition of gut microbiota. Our study addresses the ecological processes that result in the observed individuality of microbes in the gastrointestinal tract between extremely premature and term-born infants. We find that initial assembly is mainly driven by neutral ecological processes. Interestingly, while this progression is predominantly random, limitations to the dispersal of microbiota between infants become increasingly important with age and are concomitant features of gut microbiome stability. This indicates that while we cannot predict gut microbiota assembly due to its random nature, we can expect the establishment of certain ecological features that are highly relevant for neonatal health.

  • Interleukin-11 drives human and mouse alcohol-related liver disease.

    Effenberger M, Widjaja AA, Grabherr F, Schaefer B, Grander C, Mayr L, Schwaerzler J, Enrich B, Moser P, Fink J, Pedrini A, Jaschke N, Kirchmair A, Pfister A, Hausmann B, Bale R, Putzer D, Zoller H, Schafer S, Pjevac P, Trajanoski Z, Oberhuber G, Adolph T, Cook S, Tilg H
    2022 - Gut, in press

    Abstract: 

    Alcoholic hepatitis (AH) reflects acute exacerbation of alcoholic liver disease (ALD) and is a growing healthcare burden worldwide. Interleukin-11 (IL-11) is a profibrotic, proinflammatory cytokine with increasingly recognised toxicities in parenchymal and epithelial cells. We explored IL-11 serum levels and their prognostic value in patients suffering from AH and cirrhosis of various aetiology and experimental ALD.
    IL-11 serum concentration and tissue expression was determined in a cohort comprising 50 patients with AH, 110 patients with cirrhosis and 19 healthy volunteers. Findings were replicated in an independent patient cohort (n=186). Primary human hepatocytes exposed to ethanol were studied in vitro. Ethanol-fed wildtype mice were treated with a neutralising murine IL-11 receptor-antibody (anti-IL11RA) and examined for severity signs and markers of ALD.
    IL-11 serum concentration and hepatic expression increased with severity of liver disease, mostly pronounced in AH. In a multivariate Cox-regression, a serum level above 6.4 pg/mL was a model of end-stage liver disease independent risk factor for transplant-free survival in patients with compensated and decompensated cirrhosis. In mice, severity of alcohol-induced liver inflammation correlated with enhanced hepatic IL-11 and IL11RA expression. In vitro and in vivo, anti-IL11RA reduced pathogenic signalling pathways (extracellular signal-regulated kinases, c-Jun N-terminal kinase, NADPH oxidase 4) and protected hepatocytes and murine livers from ethanol-induced inflammation and injury.
    Pathogenic IL-11 signalling in hepatocytes plays a crucial role in the pathogenesis of ALD and could serve as an independent prognostic factor for transplant-free survival. Blocking IL-11 signalling might be a therapeutic option in human ALD, particularly AH.

  • Reduced alpha diversity of the oral microbiome correlates with short progression‐free survival in patients with relapsed/refractory multiple myeloma treated with ixazomib‐based therapy (AGMT MM 1, phase II trial)

    Ludwig H, Hausmann B, Schreder M, Pönisch W, Zojer N, Knop S, Gunsilius E, Egle A, Petzer A, Einsele H, Hajek R, Weisel K, Krenosz KJ, Lang A, Lechner D, Greil R, Berry D
    2021 - eJHaem, 2: 102–106

    Abstract: 

    Alterations in the human microbiome have been linked to several malignant diseases. Here, we investigated the oral microbiome of 79 patients with relapsed/refractory multiple myeloma (MM) treated with ixazomib‐thalidomide‐dexamethasone. Increased alpha diversity (Shannon index) at the phylum level was associated with longer progression‐free survival (PFS) (10.2 vs 8.5 months, P = .04), particularly in patients with very long (>75% quartile) PFS . Additionally, alpha diversity was lower in patients with progressive disease (P < .05). These findings suggest an interrelationship between the oral microbiome and outcome in patients with MM and encourage a novel direction for diagnostic and/or therapeutic strategies.

  • Gilbert's Syndrome and the Gut Microbiota - Insights From the Case-Control BILIHEALTH Study.

    Zöhrer PA, Hana CA, Seyed Khoei N, Mölzer C, Hörmann-Wallner M, Tosevska A, Doberer D, Marculescu R, Bulmer AC, Herbold CW, Berry D, Wagner KH
    2021 - Front Cell Infect Microbiol, 701109

    Abstract: 

    The heme catabolite bilirubin has anti-inflammatory, anti-oxidative and anti-mutagenic effects and its relation to colorectal cancer (CRC) risk is currently under evaluation. Although the main metabolic steps of bilirubin metabolism, including the formation of stercobilin and urobilin, take place in the human gastrointestinal tract, potential interactions with the human gut microbiota are unexplored. This study investigated, whether gut microbiota composition is altered in Gilbert's Syndrome (GS), a mild form of chronically elevated serum unconjugated bilirubin (UCB) compared to matched controls. Potential differences in the incidence of CRC-associated bacterial species in GS were also assessed. To this end, a secondary investigation of the BILIHEALTH study was performed, assessing 45 adults with elevated UCB levels (GS) against 45 age- and sex-matched controls (C). Fecal microbiota analysis was performed using 16S rRNA gene sequencing. No association between mildly increased UCB and the composition of the gut microbiota in this healthy cohort was found. The alpha and beta diversity did not differ between C and GS and both groups showed a typical representation of the known dominant phyla. Furthermore, no difference in abundance of and , which have been associated with the mucosa of CRC patients were observed between the groups. A sequence related to the strain YIT 12065 was identified with a weak association value of 0.521 as an indicator species in the GS group. This strain has been previously associated with a lower body mass index, which is typical for the GS phenotype. Overall, sex was the only driver for an identifiable difference in the study groups, as demonstrated by a greater bacterial diversity in women. After adjusting for confounding factors and multiple testing, we can conclude that the GS phenotype does not affect the composition of the human gut microbiota in this generally healthy study group.

  • Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage.

    Seki D, Mayer M, Hausmann B, Pjevac P, Giordano V, Goeral K, Unterasinger L, Klebermaß-Schrehof K, De Paepe K, Van de Wiele T, Spittler A, Kasprian G, Warth B, Berger A, Berry D, Wisgrill L
    2021 - Cell Host Microbe, in press

    Abstract: 

    Premature infants are at substantial risk for suffering from perinatal white matter injury. Though the gut microbiota has been implicated in early-life development, a detailed understanding of the gut-microbiota-immune-brain axis in premature neonates is lacking. Here, we profiled the gut microbiota, immunological, and neurophysiological development of 60 extremely premature infants, which received standard hospital care including antibiotics and probiotics. We found that maturation of electrocortical activity is suppressed in infants with severe brain damage. This is accompanied by elevated γδ T cell levels and increased T cell secretion of vascular endothelial growth factor and reduced secretion of neuroprotectants. Notably, Klebsiella overgrowth in the gut is highly predictive for brain damage and is associated with a pro-inflammatory immunological tone. These results suggest that aberrant development of the gut-microbiota-immune-brain axis may drive or exacerbate brain injury in extremely premature neonates and represents a promising target for novel intervention strategies.

  • Mucosal Biofilms Are an Endoscopic Feature of Irritable Bowel Syndrome and Ulcerative Colitis.

    Baumgartner M, Lang M, Holley H, Crepaz D, Hausmann B, Pjevac P, Moser D, Haller F, Hof F, Beer A, Orgler E, Frick A, Khare V, Evstatiev R, Strohmaier S, Primas C, Dolak W, Köcher T, Klavins K, Rath T, Neurath MF, Berry D, Makristathis A, Muttenthaler M, Gasche C
    2021 - Gastroenterology, 4: 1245-1256.e20

    Abstract: 

    Irritable bowel syndrome (IBS) and inflammatory bowel diseases result in a substantial reduction in quality of life and a considerable socioeconomic impact. In IBS, diagnosis and treatment options are limited, but evidence for involvement of the gut microbiome in disease pathophysiology is emerging. Here we analyzed the prevalence of endoscopically visible mucosal biofilms in gastrointestinal disease and associated changes in microbiome composition and metabolism.
    The presence of mucosal biofilms was assessed in 1426 patients at 2 European university-based endoscopy centers. One-hundred and seventeen patients were selected for in-depth molecular and microscopic analysis using 16S ribosomal RNA gene amplicon-sequencing of colonic biopsies and fecal samples, confocal microscopy with deep learning-based image analysis, scanning electron microscopy, metabolomics, and in vitro biofilm formation assays.
    Biofilms were present in 57% of patients with IBS and 34% of patients with ulcerative colitis compared with 6% of controls (P < .001). These yellow-green adherent layers of the ileum and right-sided colon were microscopically confirmed to be dense bacterial biofilms. 16S-sequencing links the presence of biofilms to a dysbiotic gut microbiome, including overgrowth of Escherichia coli and Ruminococcus gnavus. R. gnavus isolates cultivated from patient biofilms also formed biofilms in vitro. Metabolomic analysis found an accumulation of bile acids within biofilms that correlated with fecal bile acid excretion, linking this phenotype with a mechanism of diarrhea.
    The presence of mucosal biofilms is an endoscopic feature in a subgroup of IBS and ulcerative colitis with disrupted bile acid metabolism and bacterial dysbiosis. They provide novel insight into the pathophysiology of IBS and ulcerative colitis, illustrating that biofilm can be seen as a tipping point in the development of dysbiosis and disease.

  • Microbial community structure in hadal sediments: high similarity along trench axes and strong changes along redox gradients.

    Schauberger C, Glud RN, Hausmann B, Trouche B, Maignien L, Poulain J, Wincker P, Arnaud-Haond S, Wenzhöfer F, Thamdrup B
    2021 - ISME J, in press

    Abstract: 

    Hadal trench sediments are hotspots of biogeochemical activity in the deep sea, but the biogeochemical and ecological factors that shape benthic hadal microbial communities remain unknown. Here, we sampled ten hadal sites from two trench regions with a vertical resolution of down to 1 cm. We sequenced 16S rRNA gene amplicons using universal and archaea-specific primer sets and compared the results to biogeochemical parameters. Despite bathymetric and depositional heterogeneity we found a high similarity of microbial communities within each of the two trench axes, while composition at the phylum level varied strongly with sediment depth in conjunction with the redox stratification into oxic, nitrogenous, and ferruginous zones. As a result, communities of a given sediment horizon were more similar to each other across a distance of hundreds of kilometers within each trench, than to those of adjacent horizons from the same sites separated only by centimeters. Total organic carbon content statistically only explained a small part of the variation within and between trenches, and did not explain the community differences observed between the hadal and adjacent shallower sites. Anaerobic taxa increased in abundance at the top of the ferruginous zone, seeded by organisms deposited at the sediment surface and surviving burial through the upper redox zones. While an influence of other potential factors such as geographic isolation, hydrostatic pressure, and non-steady state depositional regimes could not be discerned, redox stratification and diagenesis appear to be the main selective forces that structure community composition in hadal sediments.

  • An Economical and Flexible Dual Barcoding, Two-Step PCR Approach for Highly Multiplexed Amplicon Sequencing.

    2021 - Front Microbiol, 669776

    Abstract: 

    In microbiome research, phylogenetic and functional marker gene amplicon sequencing is the most commonly-used community profiling approach. Consequently, a plethora of protocols for the preparation and multiplexing of samples for amplicon sequencing have been developed. Here, we present two economical high-throughput gene amplification and sequencing workflows that are implemented as standard operating procedures at the Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna. These workflows are based on a previously-published two-step PCR approach, but have been updated to either increase the accuracy of results, or alternatively to achieve orders of magnitude higher numbers of samples to be multiplexed in a single sequencing run. The high-accuracy workflow relies on unique dual sample barcoding. It allows the same level of sample multiplexing as the previously-published two-step PCR approach, but effectively eliminates residual read missasignments between samples (crosstalk) which are inherent to single barcoding approaches. The high-multiplexing workflow is based on combinatorial dual sample barcoding, which theoretically allows for multiplexing up to 299,756 amplicon libraries of the same target gene in a single massively-parallelized amplicon sequencing run. Both workflows presented here are highly economical, easy to implement, and can, without significant modifications or cost, be applied to any target gene of interest.

  • Functional iron-deficiency in women with allergic rhinitis is associated with symptoms after nasal provocation and lack of iron-sequestering microbes.

    Petje LM, Jensen SA, Szikora S, Sulzbacher M, Bartosik T, Pjevac P, Hausmann B, Hufnagl K, Untersmayr E, Fischer L, Vyskocil E, Eckl-Dorna J, Jensen-Jarolim E, Hofstetter G, Afify SM, Krenn CG, Roth GA, Rivelles E, Hann S, Roth-Walter F
    2021 - Allergy, 9: 2882-2886
  • Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling.

    Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T, Lloyd KG, Loy A, Wasmund K
    2021 - ISME J, in press

    Abstract: 

    Acidobacteriota are widespread and often abundant in marine sediments, yet their metabolic and ecological properties are poorly understood. Here, we examined metabolisms and distributions of Acidobacteriota in marine sediments of Svalbard by functional predictions from metagenome-assembled genomes (MAGs), amplicon sequencing of 16S rRNA and dissimilatory sulfite reductase (dsrB) genes and transcripts, and gene expression analyses of tetrathionate-amended microcosms. Acidobacteriota were the second most abundant dsrB-harboring (averaging 13%) phylum after Desulfobacterota in Svalbard sediments, and represented 4% of dsrB transcripts on average. Meta-analysis of dsrAB datasets also showed Acidobacteriota dsrAB sequences are prominent in marine sediments worldwide, averaging 15% of all sequences analysed, and represent most of the previously unclassified dsrAB in marine sediments. We propose two new Acidobacteriota genera, Candidatus Sulfomarinibacter (class Thermoanaerobaculia, "subdivision 23") and Ca. Polarisedimenticola ("subdivision 22"), with distinct genetic properties that may explain their distributions in biogeochemically distinct sediments. Ca. Sulfomarinibacter encode flexible respiratory routes, with potential for oxygen, nitrous oxide, metal-oxide, tetrathionate, sulfur and sulfite/sulfate respiration, and possibly sulfur disproportionation. Potential nutrients and energy include cellulose, proteins, cyanophycin, hydrogen, and acetate. A Ca. Polarisedimenticola MAG encodes various enzymes to degrade proteins, and to reduce oxygen, nitrate, sulfur/polysulfide and metal-oxides. 16S rRNA gene and transcript profiling of Svalbard sediments showed Ca. Sulfomarinibacter members were relatively abundant and transcriptionally active in sulfidic fjord sediments, while Ca. Polarisedimenticola members were more relatively abundant in metal-rich fjord sediments. Overall, we reveal various physiological features of uncultured marine Acidobacteriota that indicate fundamental roles in seafloor biogeochemical cycling.

  • Combined hormonal contraceptives are associated with minor changes in composition and diversity in gut microbiota of healthy women.

    Mihajlovic J, Leutner M, Hausmann B, Kohl G, Schwarz J, Röver H, Stimakovits N, Wolf P, Maruszczak K, Bastian M, Kautzky-Willer A, Berry D
    2021 - Environ Microbiol, 6: 3037-3047

    Abstract: 

    Recent human and animal studies have found associations between gut microbiota composition and serum levels of sex hormones, indicating that they could be an important factor in shaping the microbiota. However, little is known about the effect of regular hormonal fluctuations over the menstrual cycle or CHC-related changes of hormone levels on gut microbiota structure, diversity and dynamics. The aim of this study was to investigate the effect of CHCs on human gut microbiota composition. The effect of CHC pill intake on gut microbiota composition was studied in a group of seven healthy pre-menopausal women using the CHC pill, compared to the control group of nine age-matched healthy women that have not used hormonal contraceptives in the 6 months prior to the start of the study. By analysing the gut microbiota composition in both groups during one menstrual cycle, we found that CHC usage is associated with a minor decrease in gut microbiota diversity and differences in the abundance of several bacterial taxa. These results call for further investigation of the mechanisms underlying hormonal and hormonal contraceptive-related changes of the gut microbiota and the potential implications of these changes for women's health.

  • Anaerobic bacterial degradation of protein and lipid macromolecules in subarctic marine sediment.

    Pelikan C, Wasmund K, Glombitza C, Hausmann B, Herbold CW, Flieder M, Loy A
    2021 - ISME J, 3: 833-847

    Abstract: 

    Microorganisms in marine sediments play major roles in marine biogeochemical cycles by mineralizing substantial quantities of organic matter from decaying cells. Proteins and lipids are abundant components of necromass, yet the taxonomic identities of microorganisms that actively degrade them remain poorly resolved. Here, we revealed identities, trophic interactions, and genomic features of bacteria that degraded C-labeled proteins and lipids in cold anoxic microcosms containing sulfidic subarctic marine sediment. Supplemented proteins and lipids were rapidly fermented to various volatile fatty acids within 5 days. DNA-stable isotope probing (SIP) suggested Psychrilyobacter atlanticus was an important primary degrader of proteins, and Psychromonas members were important primary degraders of both proteins and lipids. Closely related Psychromonas populations, as represented by distinct 16S rRNA gene variants, differentially utilized either proteins or lipids. DNA-SIP also showed C-labeling of various Deltaproteobacteria within 10 days, indicating trophic transfer of carbon to putative sulfate-reducers. Metagenome-assembled genomes revealed the primary hydrolyzers encoded secreted peptidases or lipases, and enzymes for catabolism of protein or lipid degradation products. Psychromonas species are prevalent in diverse marine sediments, suggesting they are important players in organic carbon processing in situ. Together, this study provides new insights into the identities, functions, and genomes of bacteria that actively degrade abundant necromass macromolecules in the seafloor.

  • Conversion of Rutin, a Prevalent Dietary Flavonol, by the Human Gut Microbiota.

    Riva A, Kolimár D, Spittler A, Wisgrill L, Herbold CW, Abrankó L, Berry D
    2020 - Front Microbiol, 585428

    Abstract: 

    The gut microbiota plays a pivotal role in the conversion of dietary flavonoids, which can affect their bioavailability and bioactivity and thereby their health-promoting properties. The ability of flavonoids to metabolically-activate the microbiota has, however, not been systematically evaluated. In the present study, we used a fluorescence-based single-cell activity measure [biorthogonal non-canonical ammino acid-tagging (BONCAT)] combined with fluorescence activated cell sorting (FACS) to determine which microorganisms are metabolically-active after amendment of the flavonoid rutin. We performed anaerobic incubations of human fecal microbiota amended with rutin and in the presence of the cellular activity marker L-azidohomoalanine (AHA) to detect metabolically-active cells. We found that 7.3% of cells in the gut microbiota were active after a 6 h incubation and 26.9% after 24 h. We then sorted BONCAT-positive cells and observed an enrichment of ( and ), , and species in the rutin-responsive fraction of the microbiota. There was marked inter-individual variability in the appearance of rutin conversion products after incubation with rutin. Consistent with this, there was substantial variability in the abundance of rutin-responsive microbiota among different individuals. Specifically, we observed that were associated with conversion of rutin into quercetin-3-glucoside (Q-glc) and were associated with quercetin (Q) production. This suggests that individual microbiotas differ in their ability to metabolize rutin and utilize different conversion pathways.

  • Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization.

    Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, Sziranyi B, Vesely C, Decker T, Stocker R, Warth B, von Bergen M, Wagner M, Berry D
    2020 - Nat Commun, 1: 5104

    Abstract: 

    Many intestinal pathogens, including Clostridioides difficile, use mucus-derived sugars as crucial nutrients in the gut. Commensals that compete with pathogens for such nutrients are therefore ecological gatekeepers in healthy guts, and are attractive candidates for therapeutic interventions. Nevertheless, there is a poor understanding of which commensals use mucin-derived sugars in situ as well as their potential to impede pathogen colonization. Here, we identify mouse gut commensals that utilize mucus-derived monosaccharides within complex communities using single-cell stable isotope probing, Raman-activated cell sorting and mini-metagenomics. Sequencing of cell-sorted fractions reveals members of the underexplored family Muribaculaceae as major mucin monosaccharide foragers, followed by members of Lachnospiraceae, Rikenellaceae, and Bacteroidaceae families. Using this information, we assembled a five-member consortium of sialic acid and N-acetylglucosamine utilizers that impedes C. difficile's access to these mucosal sugars and impairs pathogen colonization in antibiotic-treated mice. Our findings underscore the value of targeted approaches to identify organisms utilizing key nutrients and to rationally design effective probiotic mixtures.

  • Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO, but strongly affected by drought.

    Séneca J, Pjevac P, Canarini A, Herbold CW, Zioutis C, Dietrich M, Simon E, Prommer J, Bahn M, Pötsch EM, Wagner M, Wanek W, Richter A
    2020 - ISME J, 12: 3038-3053

    Abstract: 

    Nitrification is a fundamental process in terrestrial nitrogen cycling. However, detailed information on how climate change affects the structure of nitrifier communities is lacking, specifically from experiments in which multiple climate change factors are manipulated simultaneously. Consequently, our ability to predict how soil nitrogen (N) cycling will change in a future climate is limited. We conducted a field experiment in a managed grassland and simultaneously tested the effects of elevated atmospheric CO, temperature, and drought on the abundance of active ammonia-oxidizing bacteria (AOB) and archaea (AOA), comammox (CMX) Nitrospira, and nitrite-oxidizing bacteria (NOB), and on gross mineralization and nitrification rates. We found that N transformation processes, as well as gene and transcript abundances, and nitrifier community composition were remarkably resistant to individual and interactive effects of elevated CO and temperature. During drought however, process rates were increased or at least maintained. At the same time, the abundance of active AOB increased probably due to higher NH availability. Both, AOA and comammox Nitrospira decreased in response to drought and the active community composition of AOA and NOB was also significantly affected. In summary, our findings suggest that warming and elevated CO have only minor effects on nitrifier communities and soil biogeochemical variables in managed grasslands, whereas drought favors AOB and increases nitrification rates. This highlights the overriding importance of drought as a global change driver impacting on soil microbial community structure and its consequences for N cycling.

  • The role of metal contamination in shaping microbial communities in heavily polluted marine sediments.

    Di Cesare A, Pjevac P, Eckert E, Curkov N, Miko Šparica M, Corno G, Orlić S
    2020 - Environ. Pollut., 114823

    Abstract: 

    Microorganisms in coastal sediments are fundamental for ecosystem functioning, and regulate processes relevant in global biogeochemical cycles. Still, our understanding of the effects anthropogenic perturbation and pollution can have on microbial communities in marine sediments is limited. We surveyed the microbial diversity, and the occurrence and abundance of metal and antibiotic resistance genes is sediments collected from the Pula Bay (Croatia), one of the most significantly polluted sites along the Croatian coast. With a collection of 14 samples from the bay area, we were able to generate a detailed status quo picture of a site that only recently started a cleaning and remediation process (closing of sewage pipes and reduction of industrial activity). The concentrations of heavy metals in Pula Bay sediments are significantly higher than in pristine sediments from the Adriatic Sea, and in some cases, manifold exceed international sediment quality guidelines. While the sedimentary concentrations of heavy metals did significantly influence the abundance of the tested metal resistance genes, no strong effect of heavy metal pollution on the overall microbial community composition was observed. Like in many other marine sediments, Gammaproteobacteria, Bacteroidota and Desulfobacterota dominated the microbial community composition in most samples, and community assembly was primarily driven by water column depth and nutrient (carbon and nitrogen) availability, regardless of the degree of heavy metal pollution.

  • A fiber-deprived diet disturbs the fine-scale spatial architecture of the murine colon microbiome.

    Riva A, Kuzyk O, Forsberg E, Siuzdak G, Pfann C, Herbold C, Daims H, Loy A, Warth B, Berry D
    2019 - Nat Commun, 1: 4366

    Abstract: 

    Compartmentalization of the gut microbiota is thought to be important to system function, but the extent of spatial organization in the gut ecosystem remains poorly understood. Here, we profile the murine colonic microbiota along longitudinal and lateral axes using laser capture microdissection. We found fine-scale spatial structuring of the microbiota marked by gradients in composition and diversity along the length of the colon. Privation of fiber reduces the diversity of the microbiota and disrupts longitudinal and lateral gradients in microbiota composition. Both mucus-adjacent and luminal communities are influenced by the absence of dietary fiber, with the loss of a characteristic distal colon microbiota and a reduction in the mucosa-adjacent community, concomitant with depletion of the mucus layer. These results indicate that diet has not only global but also local effects on the composition of the gut microbiota, which may affect function and resilience differently depending on location.

  • The cooling tower water microbiota: seasonal dynamics and co-occurrence of bacterial and protist phylotypes

    Tsao HF, Scheikl U, Herbold C, Indra A, Walochnik J, Horn M
    2019 - Water Res., 464-479

    Abstract: 

    Cooling towers for heating, ventilation and air conditioning are ubiquitous in the built environment. Often located on rooftops, their semi-open water basins provide a suitable environment for microbial growth. They are recognized as a potential source of bacterial pathogens and have been associated with disease outbreaks such as Legionnaires' disease. While measures to minimize public health risks are in place, the general microbial and protist community structure and dynamics in these systems remain largely elusive. In this study, we analysed the microbiome of the bulk water from the basins of three cooling towers by 16S and 18S rRNA gene amplicon sequencing over the course of one year. Bacterial diversity in all three towers was broadly comparable to other freshwater systems, yet less diverse than natural environments; the most abundant taxa are also frequently found in freshwater or drinking water. While each cooling tower had a pronounced site-specific microbial community, taxa shared among all locations mainly included groups generally associated with biofilm formation. We also detected several groups related to known opportunistic pathogens, such as Legionella, Mycobacterium, and Pseudomonas species, albeit at generally low abundance. Although cooling towers represent a rather stable environment, microbial community composition was highly dynamic and subject to seasonal change. Protists are important members of the cooling tower water microbiome and known reservoirs for bacterial pathogens. Co-occurrence analysis of bacteria and protist taxa successfully captured known interactions between amoeba-associated bacteria and their hosts, and predicted a large number of additional relationships involving ciliates and other protists. Together, this study provides an unbiased and comprehensive overview of microbial diversity of cooling tower water basins, establishing a framework for investigating and assessing public health risks associated with these man-made freshwater environments.

  • Bacterial interactions during sequential degradation of cyanobacterial necromass in a sulfidic arctic marine sediment.

    Müller AL, Pelikan C, de Rezende JR, Wasmund K, Putz M, Glombitza C, Kjeldsen KU, Jørgensen BB, Loy A
    2018 - Environ. Microbiol., 8: 2927-2940

    Abstract: 

    Seafloor microorganisms impact global carbon cycling by mineralizing vast quantities of organic matter (OM) from pelagic primary production, which is predicted to increase in the Arctic because of diminishing sea ice cover. We studied microbial interspecies-carbon-flow during anaerobic OM degradation in arctic marine sediment using stable isotope probing. We supplemented sediment incubations with C-labeled cyanobacterial necromass (spirulina), mimicking fresh OM input, or acetate, an important OM degradation intermediate and monitored sulfate reduction rates and concentrations of volatile fatty acids (VFAs) during substrate degradation. Sequential 16S rRNA gene and transcript amplicon sequencing and fluorescence in situ hybridization combined with Raman microspectroscopy revealed that only few bacterial species were the main degraders of C-spirulina necromass. Psychrilyobacter, Psychromonas, Marinifilum, Colwellia, Marinilabiaceae and Clostridiales species were likely involved in the primary hydrolysis and fermentation of spirulina. VFAs, mainly acetate, produced from spirulina degradation were mineralized by sulfate-reducing bacteria and an Arcobacter species. Cellular activity of Desulfobacteraceae and Desulfobulbaceae species during acetoclastic sulfate reduction was largely decoupled from relative 16S rRNA gene abundance shifts. Our findings provide new insights into the identities and physiological constraints that determine the population dynamics of key microorganisms during complex OM degradation in arctic marine sediments.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  • Bottled aqua incognita: microbiota assembly and dissolved organic matter diversity in natural mineral waters.

    Lesaulnier CC, Herbold CW, Pelikan C, Berry D, Gérard C, Le Coz X, Gagnot S, Niggemann J, Dittmar T, Singer GA, Loy A
    2017 - Microbiome, 1: 126

    Abstract: 

    Non-carbonated natural mineral waters contain microorganisms that regularly grow after bottling despite low concentrations of dissolved organic matter (DOM). Yet, the compositions of bottled water microbiota and organic substrates that fuel microbial activity, and how both change after bottling, are still largely unknown.
    We performed a multifaceted analysis of microbiota and DOM diversity in 12 natural mineral waters from six European countries. 16S rRNA gene-based analyses showed that less than 10 species-level operational taxonomic units (OTUs) dominated the bacterial communities in the water phase and associated with the bottle wall after a short phase of post-bottling growth. Members of the betaproteobacterial genera Curvibacter, Aquabacterium, and Polaromonas (Comamonadaceae) grew in most waters and represent ubiquitous, mesophilic, heterotrophic aerobes in bottled waters. Ultrahigh-resolution mass spectrometry of DOM in bottled waters and their corresponding source waters identified thousands of molecular formulae characteristic of mostly refractory, soil-derived DOM.
    The bottle environment, including source water physicochemistry, selected for growth of a similar low-diversity microbiota across various bottled waters. Relative abundance changes of hundreds of multi-carbon molecules were related to growth of less than ten abundant OTUs. We thus speculate that individual bacteria cope with oligotrophic conditions by simultaneously consuming diverse DOM molecules.

  • AmoA-Targeted Polymerase Chain Reaction Primers for the Specific Detection and Quantification of Comammox in the Environment.

    Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MAHJ, Daebeler A, Steinberger M, Jetten MSM, Lücker S, Wagner M, Daims H
    2017 - Front Microbiol, 1508

    Abstract: 

    Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be catalyzed by the concerted activity of ammonia- and nitrite-oxidizing microorganisms. Only recently, complete ammonia oxidizers ("comammox"), which oxidize ammonia to nitrate on their own, were identified in the bacterial genus , previously assumed to contain only canonical nitrite oxidizers. are widespread in nature, but for assessments of the distribution and functional importance of comammox in ecosystems, cultivation-independent tools to distinguish comammox from strictly nitrite-oxidizing are required. Here we developed new PCR primer sets that specifically target the genes coding for subunit A of the distinct ammonia monooxygenase of comammox . While existing primers capture only a fraction of the known comammox diversity, the new primer sets cover as much as 95% of the comammox clade A and 92% of the clade B sequences in a reference database containing 326 comammox genes with sequence information at the primer binding sites. Application of the primers to 13 samples from engineered systems (a groundwater well, drinking water treatment and wastewater treatment plants) and other habitats (rice paddy and forest soils, rice rhizosphere, brackish lake sediment and freshwater biofilm) detected comammox in all samples and revealed a considerable diversity of comammox in most habitats. Excellent primer specificity for comammox was achieved by avoiding the use of highly degenerate primer preparations and by using equimolar mixtures of oligonucleotides that match existing comammox genes. Quantitative PCR with these equimolar primer mixtures was highly sensitive and specific, and enabled the efficient quantification of clade A and clade B comammox gene copy numbers in environmental samples. The measured relative abundances of comammox , compared to canonical ammonia oxidizers, were highly variable across environments. The new comammox -targeted primers enable more encompassing future studies of nitrifying microorganisms in diverse habitats. For example, they may be used to monitor the population dynamics of uncultured comammox organisms under changing environmental conditions and in response to altered treatments in engineered and agricultural ecosystems.

  • Evaluating the Detection of Hydrocarbon-Degrading Bacteria in 16S rRNA Gene Sequencing Surveys.

    Berry D, Gutierrez T
    2017 - Front Microbiol, 896

    Abstract: 

    Hydrocarbonoclastic bacteria (HCB) play a key role in the biodegradation of oil hydrocarbons in marine and other environments. A small number of taxa have been identified as obligate HCB, notably the Gammaproteobacterial genera , and , as well as the Alphaproteobacterial genus . Detection of HCB in amplicon-based sequencing surveys relies on high coverage by PCR primers and accurate taxonomic classification. In this study, we performed a phylogenetic analysis to identify 16S rRNA gene sequence regions that represent the breadth of sequence diversity within these taxa. Using validated sequences, we evaluated 449 universal 16S rRNA gene-targeted bacterial PCR primer pairs for their coverage of these taxa. The results of this analysis provide a practical framework for selection of suitable primer sets for optimal detection of HCB in sequencing surveys.

  • Members of the Oral Microbiota Are Associated with IL-8 Release by Gingival Epithelial Cells in Healthy Individuals.

    Schueller K, Riva A, Pfeiffer S, Berry D, Somoza V
    2017 - Front Microbiol, 416

    Abstract: 

    The triggers for the onset of oral diseases are still poorly understood. The aim of this study was to characterize the oral bacterial community in healthy humans and its association with nutrition, oral hygiene habits, and the release of the inflammatory marker IL-8 from gingival epithelial cells (GECs) with and without stimulation by bacterial endotoxins to identify possible indicator operational taxonomic units (OTUs) associated with inflammatory marker status. GECs from 21 healthy participants (13 females, 8 males) were incubated with or without addition of bacterial lipopolysaccharides (LPSs), and the oral microbiota was profiled using 16S rRNA gene-targeted sequencing. The basal IL-8 release after 6 h was between 9.9 and 98.2 pg/ml, and bacterial communities were characteristic for healthy oral microbiota. The composition of the oral microbiota was associated with basal IL-8 levels, the intake of meat, tea, white wine, sweets and the use of chewing gum, as well as flossing habits, allergies, gender and body mass index. Additionally, eight OTUs were associated with high basal levels of IL-8 and GEC response to LPS, with high basal levels of IL-8, and 1 with low basal levels of IL8. The identification of indicator bacteria in healthy subjects with high levels of IL-8 release is of importance as they may be promising early warning indicators for the possible onset of oral diseases.

  • A 12-week intervention with nonivamide, a TRPV1 agonist, prevents a dietary-induced body fat gain and increases peripheral serotonin in moderately overweight subjects.

    Hochkogler CM, Lieder B, Rust P, Berry D, Meier SM, Pignitter M, Riva A, Leitinger A, Bruk A, Wagner S, Hans J, Widder S, Ley JP, Krammer GE, Somoza V
    2017 - Mol Nutr Food Res, 1600731

    Abstract: 

    A bolus administration of 0.15 mg nonivamide has previously been demonstrated to reduce energy intake in moderately overweight men. This 12-week intervention investigated whether a daily consumption of nonivamide in a protein-based product formulation promotes a reduction in body weight in healthy overweight subjects and affects outcome measures associated with mechanisms regulating food intake, e.g. plasma concentrations of (an)orexigenic hormones, energy substrates as well as changes in fecal microbiota.
    Nineteen overweight subjects were randomly assigned to either a control (C) or a nonivamide (NV) group. Changes in the body composition and plasma concentrations of satiating hormones were determined at fasting and 15, 30, 60, 90, and 120 min after a glucose load. Participants were instructed to consume 0.15 mg nonivamide per day in 450 mL of a milk shake additionally to their habitual diet. After treatment, a group difference in body fat mass change (-0.61 ± 0.36% in NV and +1.36 ± 0.38% in C) and an increase in postprandial plasma serotonin were demonstrated. Plasma metabolome and fecal microbiome read outs were not affected.
    A daily intake of 0.15 mg nonivamide helps to support to maintain a healthy body composition.

  • Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations.

    Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E, Berry D
    2017 - Environ. Microbiol., 1: 95-105

    Abstract: 

    An altered gut microbiota has been linked to obesity in adulthood, although little is known about childhood obesity. The aim of this study was to characterize the composition of the gut microbiota in obese (n = 42) and normal-weight (n = 36) children aged 6 to 16. Using 16S rRNA gene-targeted sequencing, we evaluated taxa with differential abundance according to age- and sex-normalized body mass index (BMI z-score). Obesity was associated with an altered gut microbiota characterized by elevated levels of Firmicutes and depleted levels of Bacteroidetes. Correlation network analysis revealed that the gut microbiota of obese children also had increased correlation density and clustering of operational taxonomic units (OTUs). Members of the Bacteroidetes were generally better predictors of BMI z-score and obesity than Firmicutes, which was likely due to discordant responses of Firmicutes OTUs. In accordance with these observations, the main metabolites produced by gut bacteria, short chain fatty acids (SCFAs), were higher in obese children, suggesting elevated substrate utilisation. Multiple taxa were correlated with SCFA levels, reinforcing the tight link between the microbiota, SCFAs and obesity. Our results suggest that gut microbiota dysbiosis and elevated fermentation activity may be involved in the etiology of childhood obesity.

  • Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno.

    Berg JS, Michellod D, Pjevac P, Martinez-Perez C, Buckner CR, Hach PF, Schubert CJ, Milucka J, Kuypers MM
    2016 - Environ. Microbiol., 12: 5288-5302

    Abstract: 

    Iron redox reactions play an important role in carbon remineralization, supporting large microbial communities in iron-rich terrestrial and aquatic sediments. Stratified water columns with comparably low iron concentrations are globally widespread, but microbial iron cycling in these systems has largely been ignored. We found evidence for unexpectedly high iron turnover rates in the low (1-2 µmol·l ) iron waters of Lake Cadagno. Light-dependent, biological iron oxidation rates (1.4-13.8 µmol·l ·d ) were even higher than in ferruginous lakes with well-studied microbial iron cycles. This photoferrotrophic iron oxidation may account for up to 10% of total primary production in the chemocline. Iron oxides could not be detected and were presumably reduced immediately by iron-reducing microorganisms. Sequences of putative iron oxidizers and reducers were retrieved from in situ 16S rRNA gene amplicon libraries and some of these bacteria were identified in our enrichment cultures supplemented with Fe(II) and FeS. Based on our results, we propose a model in which iron is oxidized by photoferrotrophs and microaerophiles, and iron oxides are immediately reduced by heterotrophic iron reducers, resulting in a cryptic iron cycle. We hypothesize that microbial iron cycling may be more prevalent in water column redoxclines, especially those within the photic zone, than previously believed.

  • Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms.

    Hausmann B, Knorr KH, Schreck K, Tringe SG, Glavina Del Rio T, Loy A, Pester M
    2016 - ISME J, 10: 2365-75

    Abstract: 

    Dissimilatory sulfate reduction in peatlands is sustained by a cryptic sulfur cycle and effectively competes with methanogenic degradation pathways. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16-174 nmol cm(-3) per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (⩾0.1% estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. Most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems.

  • Diversity analysis of sulfite- and sulfate-reducing microorganisms by multiplex dsrA and dsrB amplicon sequencing using new primers and mock community-optimized bioinformatics.

    Pelikan C, Herbold CW, Hausmann B, Müller AL, Pester M, Loy A
    2016 - Environ. Microbiol., 9: 2994-3009

    Abstract: 

    Genes encoding dissimilatory sulfite reductase (DsrAB) are commonly used as diagnostic markers in ecological studies of sulfite- and sulfate-reducing microorganisms. Here, we developed new high-coverage primer sets for generation of reductive bacterial-type dsrA and dsrB polymerase chain reaction (PCR) products for highly parallel amplicon sequencing and a bioinformatics workflow for processing and taxonomic classification of short dsrA and dsrB reads. We employed two diverse mock communities that consisted of 45 or 90 known dsrAB sequences derived from environmental clones to precisely evaluate the performance of individual steps of our amplicon sequencing approach on the Illumina MiSeq platform. Although PCR cycle number, gene-specific primer mismatches and stringent filtering for high-quality sequences had notable effects on the observed dsrA and dsrB community structures, recovery of most mock community sequences was generally proportional to their relative input abundances. Successful dsrA and dsrB diversity analysis in selected environmental samples further proved that the multiplex amplicon sequencing approach is adequate for monitoring spatial distribution and temporal abundance dynamics of dsrAB-containing microorganisms. Although tested for reductive bacterial-type dsrAB, this method is readily applicable for oxidative-type dsrAB of sulfur-oxidizing bacteria and also provides guidance for processing short amplicon reads of other functional genes.

  • A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes.

    Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D, Loy A
    2015 - Front Microbiol, 731

    Abstract: 

    High throughput sequencing of phylogenetic and functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we introduce a highly adaptable and economical PCR approach to barcoding and pooling libraries of numerous target genes. In this approach, we replace gene- and sequencing platform-specific fusion primers with general, interchangeable barcoding primers, enabling nearly limitless customized barcode-primer combinations. Compared to barcoding with long fusion primers, our multiple-target gene approach is more economical because it overall requires lower number of primers and is based on short primers with generally lower synthesis and purification costs. To highlight our approach, we pooled over 900 different small-subunit rRNA and functional gene amplicon libraries obtained from various environmental or host-associated microbial community samples into a single, paired-end Illumina MiSeq run. Although the amplicon regions ranged in size from approximately 290 to 720 bp, we found no significant systematic sequencing bias related to amplicon length or gene target. Our results indicate that this flexible multiplexing approach produces large, diverse, and high quality sets of amplicon sequence data for modern studies in microbial ecology.

Book chapters and other publications

No matching database entries were found.